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Abstract

In this paper, Schaefer’s fixed point theorem and nonlinear alternative of
Leray-Schauder type are used to investigate the existence of solutions for second
order boundary value problem for impulsive dynamic equations on time scales.
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1 Introduction

This paper is concerned with the existence of solutions of boundary value problems
for impulsive dynamic equations on time scales. We consider the following boundary
value problem,

—y2(t) = flt,y(@), te J:==[0,1], t #t,, k=1,...,m, (1)
y(t:) - y(tk) = Ik(y(tg)): k= 1? EEER{LH (2)

yA(t:-) - yA(tk) = Ik(y(t.l:))r k=1,...,m, (3)

y(0) = y(1) =0, (4)

where T is time scale, [0,1] C T, f : T x IR — IR, is a given function, I, [, €
O(IR, ]R,), €T, 0=t <1 <o <ty < vl = 1, 'y(t;:) = hliIgL y(tk; + h) and
e )= hli'%’l_ y(tr — h) represent the right and left limits of y(¢) at t = #;.

Impulsive differential equations have become important in recent years in mathe-
matical models of real processes and they rise in phenomena studied in physics, chem-

ical technology, population dynamics, biotechnology and economics. There has been
a significant development in impulse theory, in recent years, especially in the area of
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impulsive differential equations with fixed moments; see the monographs of Bainov and
Simeonov [12], Lakshmikantham et al [23], and Samoilenko and Perestyuk [25] and the
references therein. In recent years differential equations on times scales have received
much attention. We refer to the books by Agarwal and O’Regan [6], Bohner and Peter-
son [14], [15], Lakshmikantham et al [24] and the papers by Anderson (7], [9], Agarwal
et al [1], [2], [3], [4], Bohner and Guseinov [13], Bohner and Eloe [17], Bohner and
Peterson [16], Erbe and Peterson [19], [20]. The times scales calculus has tremendous
potential for applications in mathematical models of real processes and phenomena,
for example in physics, chemical technology, population dynamics, biotechnology and
economics, neural networks, social sciences, see the monographs of Aulback and Hilger
[11], Bohner and Peterson, [14], [15] Lakshmikantham et al [24], and to the references
therein. The existence of solutions of boundary value problems on a measure chain (i.e.
time scales) was recently studied by Agarwal and O'Regan [5], Anderson [8], [10], Hen-
derson [21] and Sum and Li [27]. Very recently [22] Henderson investigate the existence
of double solutions to an impulsive dynamic equation. The main theorems of this paper
complement the very little existence results devoted to impulsive dynamic equations
on a time scale. We shall prove our two existence results for the problem (1)-(4) by
using Scheafer’s fixed point theorem [26] and nonlinear alternative of Leray-Schauder

type [18].

2 Preliminaries

We will briefly recall some basic definitions and facts from the times scales calculus
that we will use in the sequel.

A time scale T is a closed subset of IR. It follows that the jump operators o, p :
T — T defined by

o(t) =inf{s €T :s>t} and p(t) =sup{s €T :s < t}

(supplemented by inf () := supT and sup @ := infT) are well defined. The point ¢ € T
is left-dense, left-scattered, right-dense, right-scattered if p(t) = ¢, p(t) < ¢, o(t) =
t, o(t) > t, respectively. If T has a right-scattered minimum m, define T :=T — {m};
otherwise, set T, =T. If T has a left-scattered maximum M, define T* :=T — {M};
otherwise, set T¥ = T. The notations [a, 8], [a,b), and so on, will denote time scales

intervals
[a,0] ={t €T :a <t < b},

where a,b € T with a < p(b).

Definition 2.1 Let X be a Banach space. The function f :T — X is called rd— conti-
nuous provided it is continuous at each Tight-dense point and has a left-sided limit at
each point, write f € Cra(T) = Cog(T, X). Lett € T*, the A derivative of f att, denoted
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fA(t), be the number (provided it exists) if for all e > 0 there exists a neighboord U of
t such that

1£(e(t)) = f(s) = F2(B)o(t) — 8]l < elo(t) — s

for all s € U, at fix t. Let F be a function. It is called antiderivative of f : T — X
provided
FA(t) = f(t) for eacht € T*.

A function p : T — IR is called regressive if
1+ u(t)p(t) #0 forall teT,

where u(t) = o(t) — t which called the graininess function. C([0,%],IR) is the Banach
space of all continuous functions from [a, b] into IR where [a,b] C T with the norm

I19lleo = sup{ly(£)| : t € [a, b]}.
Remark 2.1 (i) If f is continuous, then f rd—continuous.

(i) If f is delta differentiable at t then f is continuous at t.

3 Main Results

We will assume for the remainder of the paper that, for each k£ = 1,..., m, the points
of impulse #; are right dense. In order to define the solution of (1)—(4) we shall consider
the following space

yr € C(Ji,IR),k =0,...,m and there exist y(t;)
PC=4y:[0,]] —IR:
and y(t5), k= 1,...,m with y(t;) = y(ts)
which is a Banach space with the norm

lyllpc = max{||y|ls, k=0,...,m},

where ;. is the restriction of y to Jx = [tk, ts+1] C [0,1], £ =0,...,m. Let us start by
defining what we mean by a solution of problem (1)-(4).

Definition 3.1 A functiony € PCNURoC?((tx, tes1), IR) is said a solution of (1)-(4)
if it satisfies the differential equation

—y22(t) = f(t,y(t)) everywhere on Il =15 o it

and for each k = 1,...,m the function y satisfies the conditions y(t}) — y(tx) =
Ii(y(ty)), v2(F) — y2(t) = L(y(t7)) and the boundary conditions y(0) = y(1) = 0.
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Lemma 3.1 Let f:T — IR be rd—continuous. Ify is a solution of the equation

t) = [ Gt )f(e)As + 3 Wit i), ©)
where (1 = o(s) FO< o<t
—t)o(s), if0<s<
Gt.s) = { G-cls)t, Aft<s=i
and
_ [ H=Te(y(te) — (1= te) T (y(t))), if0<t <t
Walt o) = { (S — AL, f h<i<L
then y is a solution of the boundary value problem
—y*201) = f(2), (6)
y(tf) —y(te) = L(y(ty)), k=1,...,m, (M)
YA () — v () = L(y(ty)), k=1,...,m, (8)
y(0) =y(1) = 0. (9)

Proof. Let y satisfies the integral equation (5), then y is solution of the problem
(6)—(9). Firstly y(0) = y(1) = 0. Let t € [0, 1]\{¢1,..-,tm}, then we have

(0) = [ Gt S5+ 3 Wil te)

Hence

- - A
20 = [[ uoras+ 3 Wit vle)]
5 k=1 A

= |f ‘G, S)f(s)As]A + [i Wilt, y(tk))}
= [[a-ne@read + [ a-censend +Ewiey

k=1
_ f:g(s)f(s)As_g. /tl(l—a(s)) f(s)Aerkz_‘i WA(t, ),
here Te(y(te)) — (1 — t) I (y(te))] ifo<t<t
Wf(t’y)z{ i[?JJ!T:e(]@CJ(?fk))—tkflr:(3,fk(1tg;:))})c, " i< t_gkl,
and

W2l =0 ot k=1...,m
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Thus
Po0 = |- [ o+ /tl(l-a(s))f(s)Aeréwf(t,y)r

[— fota(S)f(s)As]A + Utl(l = 0(8))f(5)A3]A
- 7.

Clearly we have

fl

Y2 () = y2(t7) = L(y(ty), fork=1,...,m.
From the definition of y we can prove that

y(tf) —y(ty) = L(y(t)), fork=1,...,m.

Let us introduce the following hypotheses, which are assumed hereafter:
(H1) The functions f: [0,1] x IR — IR and ¢ : T — T are continuous.

(H2) There exist constants ¢, & such that

()] <, |Ik(y)| <& foreach k=1,...,m, and for all y € IR.

(H3) There exists a function p € C([0, 1], IR.,) such that

1 y)ll < p(2) for each (t,7) € [0,1] x IR.

Theorem 3.1 Suppose that hypotheses (H1)-(HS) are satisfied. Then the impulsive
BVP (1)-(4) has at least one solution.

Proof. Transform the BVP (1)-(4) into a fixed point problem. Consider the operator
N : PC — PC defined by:

1 m
(N9)(0) = [ Glt,9)f(s,u(s)As + 3 Wlt,y(te).
k=1
Remark 3.1 Clearly from Lemma 3.1 the fized points of N are solutions to (1)-(4).

We shall show that N satisfies the assumptions of Schaefer’s fixed point theorem. The
proof will be given in several steps. We show first that IV is continuous and completely
continuous.

Step 1: N is continuous.
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Let {y.} be a sequence such that y, — y in PC. Then

NG)®) - NGO < sup (69| [ 17(5,9a()) - S5, y(s)IAs

(t,s)eJxJ

£ 30 [Walty yalte)) — Wt w(te))]

k=l

Since f, Iy, I are continuous, we have

IN@) = N@w)Blpe < sup |G (55n()) = FEy( Do

(t,s)exJ

423 1 un(te)) — Tew(te))| + 1 som(8) = Tt

Thus
IN(yn) = N(¥)|leo — 0 as n — oo.

Step 2: N maps bounded sets into bounded sets in PC.

Indeed, it is enough to show that there exists a positive constant £ such that for
eachy € B, = {y € PC: ||ly|lpc < ¢} one has || Ny||pc < £. For each t € [0, 1] we have

(¥)E) = [ Gle ) (o, (6N As + 3 Walt (8

From (H2), (H3) we have

(Ny)(t)| = ‘_/ (t,5)f(s,y(s))As + ZWk (t, y(te))
k=1
< s [G(9) [ I ue)IAs+ > [Walt, y(t)
(t,s)EJxJ k=0
< sup |G(t,s)] f BB Y ot 2l
(t,s)edxJ 0 k=0
Thus
|Nyllpe < ps+2D [ce + &) =4,
k=0
where

p= sup |G(ts)| sup p(t).
(t,s)eJxJ te[0,1]

Step 3: N maps bounded sets into equicontinuous sets of PC'.
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Let 71,72 € J, r1 < r9 and B, be a bounded set of PC as in Step 2. Let y € By,
then

I07)(r) = Wl < [ 1G(ra,5) = Glr 91 (5,u(s)) s

+ j; [We(ra, y(t)) — Wi(r1, y(t))]
< [[16629) - Glrs,9)(s)ss

+ 30 Walra,u(s) = Walrs, ()|

The right-hand side tends to zero as r — 7, — 0. As a consequence of Steps 1 to 3
together with the Arzeld-Ascoli Theorem we can conclude that N : PC — PC is
continuous and completely continuous.

Step 4: Now it remains to show that the set
EN):={ye PC:y=AXN(y), forsome 0<)<1}

s bounded. As in step 3 we can prove that £(IV) is bounded.

Set X := PC. As a consequence of Schaefer’s fixed point theorem theorem ([26] p.
29) we deduce that G has a fixed point y which is a solution to problem (1)-(4). O

We present now a result for the problem (1)-(4) in the spirit of the nonlinear
alternative of Leray-Schauder type [18].

Theorem 3.2 Suppose that hypotheses (H1)-(H2) and the following condition are sat-
isfied:

(A1) There exists a continuous non-decreasing function v : [0,00) — (0,00), p €
C([0,1],IR;) and nonnegative number r > 0 such that

IE @ y)ll < 5(6)¢(lyl) for eachy € IR

and
T

1 m
Sul?x . ¥(r) /0 B(s)As+ 2 Z[ck + Tk

(t,S)E[U,l k=0

> 1.

Then the impulsive IVP (1)-(4) has at least one solution.

Proof. Transform the BVP (1)-(4) into a fixed point problem. Consider the operator
N defined in the proof of Theorem 3.1. We shall show that G satisfies the assumptions
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of the nonlinear alternative of Leray-Schauder type. Let y be such that y = ANy for
some A € (0,1). Thus

(V)0 = [ Gt 7oyl s + 3 Welt,u(ee).

B=cl

From (H2), (A1) we have

WOl = ][ Gt DA+ 3 Wit vie)

IA

oup 1G(t.)| [ pls)plly(s))As

(t,5)€[0,1]x[0,1]
+2> lex + T

k=0

sup (Gt 9)] [ plsp(lsllro)ds
] 0

(t,5)€[0,1]x[0,1

m
+2 Z[Ck -+ Ek}.
k=0

IA

Consequently,

lslec -
sup [G(t,9)] [ ple)(lvllpc)hs +23 lee +2]

(t,5)€[0,1]x[0,1]

Then by (Al) there exists r such that |ly|lpc # 7.
Set
U={yeC(0,T,R): |yllrc <}

As in Theorem 3.1 the operator N : U — C([0,T)],IR) is continuous and completely
continuous. From the choice of U there is no y € 8U such that y = AN(y) for some
A € (0,1). As a consequence of the nonlinear alternative of Leray-Schauder type, [18],
we deduce that IV has a fixed point y in U, which is a solution of the boundary value
problem (1)-(4). O

References

[1] R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its
applications, Results Math., 35 (1999), 3-22.

[2] R. P. Agarwal, M. Bohner and A. Peterson, Inequality on time scales: A Survey,
Math. Inequal. Appl., 4 (2001), 555-557.



Impulsive Dynamic Equations on Time Scales 9

3] R. P. Agarwal and M. Bohner, Quadratic functionals for second-order matrix

equations on time scales, Nonlinear Anal. 33 (1998), 675-692.

[4] R.P. Agarwal, M. Bohner and P. J.Y. Wong, Sturm-Liouville eigenvalue problems

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

18]

[16]

[17]

on time scales, Appl. Math. Comput. 99 (1999), 153-166.

R. P. Agarwal, and D. O'Regan, Triple solutions to boundary value problems on
time scales, Applied Math. Letters 13 (2000), 7-11.

R. P. Agarwal and D. O’Regan, Infinite Interval Problems for Differential, Differ-
ence and Integral Equations, Kluwer Acad. Pub. Dordrecht, 2001.

D. R. Anderson, Eigenvalue intervals for a second-order mixed-conditions problem
on time scale, Int. J. Nonlin. Differential Equations 7 (2002), 97-104.

D. R. Anderson, Eigenvalue intervals for a two-point boundary value problem on
a measure chain, J. Comput. Appl. Math., 141 (2002), 57-64.

D. R. Anderson, Eigenvalue intervals for even-order Sturm-Liouville dynamic
equations, J. Comput. Appl. Math., in press.

D. R. Anderson, Solutions to second-order there point problems on on time scales,
J. Differ. Equ. Appl., 8 (2002), 673-688.

B. Aulbach and S. Hilger, Linear dynamical processes with inhomogeneous time
scale, Nonlinear Dynamics and Quantum Dynamical Systems, Akademie Verlage,
Berlin, 1990.

D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Ellis Horwood
Ltd., Chichister, 1989.

M. Bohner and G. Sh. Guseinov, Improper integrals on time scales, Dynam. Sys-
tems Appl. 12 (2003), 45-65.

M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction
with Applications. Birkhauser, New York, 2001.

M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales,
Boston, 2003.

M. Bohner and A. Peterson, First and second order linear dynamic equations on
time Scales, J. Differ. Equations. Appl. 7 (2001), 767-792.

M. Bohner and P. W. Eloe, Higher order dynamic equations on measure chains:
Wronskians, disconjugacy, and interpolating families of functions, J. Math. Anal.
Appl. 246 (2000), 656-656.



10 M. Benchohra, S.K. Ntouyas and A. Quahab

[18] J. Dugundji and A. Granas, Fized point Theory, Mongrafie Mat. PWN, Warsaw,
1982.

[19] L. Erbe and A. Peterson, Positive solutions for nonlinear differential equations on
a measure chains, Dynam. Contin. Discrete Impuls. Systems 6 (1999), 121-137.

[20] L. Erbe and A. Peterson, Green’s functions and comparison theorems for differen-
tial equations on a measure chains, Math. Comput. Modeling 32 (2000), 571-585.

[21] J. Henderson, Nontrivial solutions to a nonlinear boundary value problem on a
times scale, Comm. Appl. Nonlin. Anal., in press.

[22] J. Henderson, Double solutions of impulsive dynamic boundary value problems on
a time scale, J. Differ. Equ. Appl. 8 (2002), 345-356.

[23] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Dif-
ferential Equations, World Scientific, Singapore, 1989.

[24] V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, Dynamic Systems on
Mesure Chains, Kluwer Academic Publishers, Dordrecht, 1996.

[25] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World
Scientific, Singapore, 1995.

[26] D. R. Smart, Fized Point Theorems, Cambridge Univ. Press, Cambridge, 1974.

[27] J. P. Sum and W. T. Li, A new existence theorem for right focal boundary value
problems on a measure chains, Appl. Math. Letters, in press.



